
Genetic Programming-based Phononic Bandgap Structure
Design

by Raymond A. Wildman and George A. Gazonas

ARL-TR-5733 September 2011

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated
by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-5733 September 2011

Genetic Programming-based Phononic Bandgap Structure
Design

Raymond A. Wildman and George A. Gazonas
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHOR(S) 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:  
19a. NAME OF RESPONSIBLE PERSON

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

September 2011 Final

ARL-TR-5733

Approved for public release; distribution is unlimited.

October 2009-July 2011

Genetic Programming-based Phononic Bandgap Structure Design

AH80Raymond A. Wildman
George A. Gazonas

U.S. Army Research Laboratory
ATTN: RDRL-WMM-B
Aberdeen Proving Ground, MD 21005-5069

primary author’s email: <raymond.a.wildman.civ@mail.mil>

Two-dimensional phononic bandgap materials are designed using a genetic programming topology optimization method and a
finite element elastic wave solver. The optimization problem involves maximizing the bandgap, or range of blocked
frequencies of propagating elastic waves, in a periodic structure by designing the shape of an inclusion. This problem is
modeled as a single unit cell using the time-harmonic elastodynamic wave equation with Floquet (periodic) boundary
conditions. After discretization, an eigenvalue solver is used to compute the allowed frequencies of propagation for a certain
wave vector. The geometry optimization method uses a tree structure to define geometry: internal tree nodes represent a
priority-based overlap and leaf nodes contain a list of points whose convex hull represent a convex polygon. A genetic
programming method is used to optimize this data structure. Several bandgap structures are designed using different materials,
unit cell shapes, and total number of available materials. The results show that bandgaps exist for several different material
systems though typically not just between the first and second bands. In addition to the inclusion shape, the size of the bandgap
usually depends on the materials, with materials systems having large differences in wave speeds producing larger gaps.

phononic bandgap; genetic programming; optimization; geometry

UU 36

Raymond A. Wildman

410-306-2232Unclassified Unclassified Unclassified

ii



Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. Phononic Bandgap Material Model 2

2.1 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Bandgap Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Geometry Optimization Method 9

3.1 Geometry Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Convex Polygon Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Inhomogeneous Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Results 15

4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Conclusions 20

iii



6. References 21

Distribution List 23

iv



List of Figures

Figure 1. Unit cell diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2. Example of a band diagram, generated from a silicone rubber/lead system with a
square inclusion in a square unit cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3. Example of the decoding process: (a) Point lists with their convex hulls, (b) tree
defining priority combinations, (c) first subtree decoded, and (d) final result . . . . . . . . . . . . . . . . 12

Figure 4. Results of example 1; light gray indicates epoxy and dark gray indicates lead. . . . . . . 17

Figure 5. Band diagram for example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 6. Results of example 2; light gray indicates epoxy, dark gray indicates lead, and
black represents silicone rubber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 7. Band diagram for example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



List of Tables

Table 1. Genetic programming input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vi



1. Introduction

Phononic bandgap materials—periodic materials that block acoustic or elastic wave propagation
in a range of frequencies—have a variety of applications including piezoelectric transducers (1),
ultrasound and polarization filters, acoustic filters for sound reduction, and vibration-less
environments for sensitive equipment (2). There has been recent research into designing such
materials, first dating back to 1994 (3), which showed the design of bandgap materials by varying
the filling fraction of a specified geometry. Later, the actual geometries of bandgap material
inclusions were optimized (4). Finally, in reference 5, genetic algorithms were used to maximize
the bandgap of phononic materials by designing an inclusion.

In previous work, all methods used a discretized unit cell, either with square elements, as in
reference 4, or triangular elements, as in reference 5. A major downside of using a strict grid is
that the grid resolution can be critical in outcome and efficiency. Using a too coarse grid limits
the complexity of the solutions, but a too fine grid may take exceedingly long to converge, if at
all. Another issue in references 4 and 5 was that both approaches only considered two-phase
systems. While not a severe limitation, it may be fruitful to allow the optimizer to choose which
materials to use in a design, regardless of number. Finally, reference 5 only considered acoustic
wave propagation, not full elastic waves.

These limitations are addressed here, specifically by using a genetic programming approach to
geometry optimization, introduced in reference 6, and extended in references 7 and 8 and using
the elastic wave equation in place of the acoustic equation. The genetic programming approach
represents geometry using a tree structure, representing combinations of arbitrary convex
polygons. In this tree structure, each leaf node contains a list of points and the convex hull of this
list of points represents a convex polygon, to be combined with other polygons as defined in the
function nodes of the tree. The lists themselves are not limited in size, so each convex polygon
can have any number of vertices. This approach is naturally hierarchical in contrast to strict grid
methods, as in references 4 and 5. The method can be initialized with a single convex polygon
with a small number of vertices, while more polygons and vertices can be inserted later. For
multi-phase systems, material parameters can be inserted in the leaf nodes, as in reference 8. As
is shown, lifting these limitations leads to higher quality designs, more efficiently.

The remainder of this report describes the systematic design of phononic bandgap materials using
genetic programming. Specifically, section 2 gives the formulation of the problem in terms of
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finite elements and discusses a method for determining the bandgap size for a given material.
Section 3 describes the geometry optimization method, which uses genetic programming and
convex polygons to construct a solution. Several optimization results are presented in section 4
and the conclusions are discussed in section 5.

2. Phononic Bandgap Material Model

The main purpose of this work is to lift many of the limitations in place in reference 5. First,
reference 5 only considered scalar dilatational waves; here the full vector, elastic problem is
treated. Another restriction was the limit to two-phase systems, which is replaced with a more
general method capable of choosing from a database of materials.

Phononic bandgap materials are periodic structures, defined by some unit cell. The unit cell of
the problem considered is shown in figure 1 and has a few defining parameters: the side lengths,
ℓi = |li|, and the acute angle α. Figure 1 is labeled with the edge vectors li, though typically the
problem is defined using side lengths and acute angle via

l1 = ℓ1x̂,

l2 = ℓ2 cos(α)x̂ + ℓ2 sin(α)ŷ.
(1)

l

l

a

Figure 1. Unit cell diagram.

2



In a phononic bandgap material, assuming it is infinitely periodic and there are no body forces,
the displacement u = uxx̂ + uyŷ follows the elastic wave equation
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where λ and µ are the Lamé parameters. Since we are interested in time-harmonic solutions,
equation 2 can be converted to the frequency domain assuming ejωt time dependence:
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(3)

The appropriate boundary conditions must now be formulated to reduce the problem to a single
unit cell. As the problem is infinitely periodic, we assume that the solution will not grow or
shrink as it travels through the material. (Were it to grow or shrink, it would either grow to
infinity or shrink to zero, neither of which is useful.) Assuming the magnitude does not change
across unit cells, the solutions on opposing boundaries must then be phase-shifted versions, also
known as Floquet boundary conditions (9), which can be written as

u(r + l1) = u(r)ejk·l1 , r = al2,

u(r + l2) = u(r)ejk·l2 , r = bl1,

∇ · u(r + l1) = ∇ · u(r)ejk·l1 , r = al2,

∇ · u(r + l2) = ∇ · u(r)ejk·l2 , r = bl1,

(4)

where 0 ≤ a, b ≤ 1 are arbitrary real numbers.

Equations 3 and 4 define a generalized eigenvalue problem in ω and u, given a wave-vector k.
Because of the periodicity of the problem, solutions will occur in discrete modes, so that for a
given k, a discrete set of allowed frequencies of propagation ω can be found. If these equations
can be solved for all k, the full set of allowed propagation frequencies can be recovered. Regions
of no allowed propagation can exist, which defines a bandgap. Fortunately, the solutions
themselves are periodic in k, so only a finite region must be searched for bandgaps. The defining
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region of k, or Brillouin zone, is related to the edge vectors l by

km · ln = 2πδmn, (5)

where δmn is the Kronecker delta function. This set of equations can now be discretized using
finite elements and solved as an eigenvalue problem to find the size of the bandgap for a given
phononic bandgap material. This process is described in the following subsections.

2.1 Finite Element Formulation

First, the governing equations are converted to a weak form, by projecting the equations onto a set
of testing functions
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where tx
m and ty

m are the x- and y-components of a vector testing function tm and Ω denotes the
unit cell. The double derivatives on the displacement in equation 6 can be removed by shifting
the derivatives onto the testing functions. After some simplification, we get
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Next, the unit cell is meshed with triangular elements using the method of Persson and Strang
(10). One important note regarding the meshing is that the nodes on opposing boundary edge
pairs should be equally spaced and equal in number to facilitate the application of the boundary
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conditions. Given this discretization, the solution is approximated with a set of basis functions,
which are identical to the testing functions. The basis and testing functions used here are linear,
nodal elements, which are unity at a node and zero at all surrounding mesh edges. (This function
is also known as a hat function.) Expanding the solution in a series and separating the boundary
terms gives
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where ux and uy are the x- and y-components of the displacement, bx
n and by

n are the x- and
y-components of a vector basis function bn, N is the number of internal nodes, M is the number
of independent boundary nodes, and P is the number of dependent boundary nodes. The
difference between independent and dependent nodes can be gleaned from equation 4: A
dependent boundary node is a node that can be written in terms of the solution at another
boundary node. We define the independent boundary nodes to be those nodes along l1 and l2,
except at the r = l1 and r = l2 corners. Applying the Floquet boundary conditions to the
unknown boundary term coefficients gives

zx
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(9)

for nodes located on the appropriate boundary according to equation 4. These relations can be
collected into matrix form

zx = Dxwx,

zy = Dywy.
(10)

The matrices Dx and Dy contain the phase shift terms from equation 9, one coefficient per
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column. After substituting the approximate solution from equation 8 into equation 7, we get
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Each submatrix in the matrices above correspond to specific terms of equation 7 after basis
function substitution. The terms of Bxx

vv equate to
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The dependent boundary terms can be eliminated by substituting equation 10 into equation 11,
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arriving at
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Equation 14 is a generalized eigenvalue problem of the form

ω2Bu = Au. (15)

As in reference 5, ARPACK is used to solve the eigenvalue problem. Using the fact that B is
Hermitian, positive definite, B can be decomposed using a Cholesky factorization, and equation
15 can be solved more efficiently. Ultimately, for a given k vector (which determines the matrix
D), the eigenvalues ω2 represent the allowed frequencies of propagation for that given wave
vector. Knowledge of ω given k is necessary in computing the bandgap of a material as is
discussed in the next subsection.

2.2 Bandgap Determination

The finite element formulation is only the first step of determining the bandgap of a structure as
any single solution of the above problem only reveals the propagation frequencies and modes at a
single k vector. A band diagram can be constructed by solving the problem at different values of
k, and the bandgap can be approximated visually. Automating this process requires a local
search method to determine the maximum frequency of a one band and the minimum frequency
of the next highest band. In reference 5, the bandgap always appeared between the first and
second bands of the structure; however, because they are composed of both longitudinal and shear
components, elastic waves generate bandgaps between higher bands, typically the third and
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fourth, but never the first and second. Figure 2 shows an example of a band diagram: Note that
the bandgap appears between the third and fourth bands. Additionally, the band structure shown
in figure 2 has mirror symmetry about the kx = ky line.
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Figure 2. Example of a band diagram, generated from a silicone rubber/lead
system with a square inclusion in a square unit cell.

Overall, the approach is similar to that of reference 5, with a few changes. First, the relative
bandgap is computed by finding the maximum frequency (versus k) in the first band, ω1, and the
minimum frequency in the second band, ω2. Given these quantities, the relative bandgap is

brelative =
ω2 − ω1√

ω1ω2

(16)

Previously, a simplex method was used to determine the relative bandgap. The simplex method is
robust and fairly efficient, though it is not always the most accurate method. (It also may not be
more efficient than a derivative-based method with a good starting guess.) Here we use a
standard derivative-based method, the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) (11).
One issue with derivative-based methods is that they require a good starting location to find the
global minimum of a function. As can be seen from figure 2, there are many trouble areas for
local search methods. Instead of using a single, random starting vector, a uniform 5-by-5 grid of
points is mapped in k-space and the bandgap is evaluated at only the points that (inclusively) fall
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to the left of the kx = ky line. The best initial guess of the 15 points is used as the starting point
for BFGS, and initial guesses for both bands of interest can be computed simultaneously.
Although this approach requires 15 function evaluations initially, it typically leads to fast and
robust convergence of BFGS.

3. Geometry Optimization Method

Phononic bandgap materials may be composed of simply a matrix with a single inclusion, or
possibly multiple materials each with arbitrary topology. The method outlined in reference 5
considered only two-phase systems and used a fixed triangular grid to represent geometry. The
main issue with the approach of reference 5 was the fixed discretization, which requires more
optimization parameters to return a higher resolution solution. An increase in optimization
parameters leads to longer run times, and possibly, poor convergence. Here, a more flexible
method based on genetic programming first discussed in reference 6 is used with minor
modifications. The main advantage over a fixed discretization is that large, homogeneous regions
can be represented with far fewer parameters. The genetic programming approach is also
naturally hierarchical because points and polygons can be added to chromosomes as needed.
This method has the advantages of a finer discretization, but without the need to overestimate the
required grid size. Subsection 3.1 reviews the geometry encoding and subsection 3.2 discusses
the modification to the genetic operators laid out in references 6 and 7.

3.1 Geometry Encoding

In contrast to many previous geometry encoding schemes, the method used here is based on a
genetic programming (12) implementation of constructive solid geometry. In addition, the
primitives used to generate geometries are arbitrary convex polygons as defined by the convex
hull of a list of points (6). Some methods in use today have adopted a genetic programming
approach, but use a database of primitives (13, 14). In subsection 3.1.1, the convex polygon
primitives are discussed, and in subsection 3.1.2, the combination scheme that accounts for
inhomogeneous materials is reviewed from reference 8.

3.1.1 Convex Polygon Primitives

A convex polygon can be defined many ways, most simply as a polygon in which any line
segment with both end points interior to the polygon never cross a boundary. A useful way to
specify a convex polygon (for our purposes, especially) is as the convex hull of a set of points.
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The convex hull of a set of points can be defined as the intersection of all half-planes that contain
those points, or equivalently, as

Hconvex(X) =

{
k∑

i=1

αixi

∣∣∣∣∣ xi ∈ X, αi ≥ 0,
k∑

i=1

αi = 1, i = 1, 2, . . .

}
, (17)

where X is some set of points and k varies from 1 to the total number of points in X . Several
algorithms exist to compute the convex hull of a list of points, typically these algorithms return
the subset of vertices that define the convex hull. There are different algorithms of varying
computational complexity, fortunately O(n log n) and O(n log h) (where h is the number of
vertices on the convex hull) algorithms exist (15).

Convex polygons are ideal in some ways for optimization. First, they are easy to define using an
arbitrary list of points as described previously. Second, they have few constraints, i.e., any list of
three or more, non-collinear points (in two dimensions) defines a convex polygon via its convex
hull. Third, in this implementation, the number of points in a list is not restricted, so that they are
flexible in “smoothness.” Convex polygons can range from simple, triangular shapes or
arbitrarily “smooth” approximations of truly smooth shapes. (Of course, a linear interpolation
scheme is used throughout, but because the number of points is not restricted, they can approach
smooth shapes such as circles and other curves.) Finally, they are easy to manipulate via genetic
operators, especially crossover, as is discussed below. Using a database method can be difficult
in terms of crossover, because it may not make sense to combine the defining parameters of a
rectangle (width and height) with a circle (radius).

3.1.2 Inhomogeneous Combinations

While convex polygons are useful for optimization, on their own they are not sufficient to
represent any arbitrary geometry or topology. Originally, Boolean combinations of convex
polygons were used to generate more complex structures (6); unfortunately, Boolean
combinations can only represent homogeneous structures. In this report, we wish to design
multi-phase systems, so we must generalize the method in reference 6 to inhomogeneous systems,
as in reference 8.

There are several ways to generalize the Boolean approach to inhomogeneous structures; here, a
priority-based approach is used. Simply stated, each terminal node in a tree is assigned a priority
value (some real number, initially randomly generated, between 1 and 10, for example) and
material properties. Function nodes in this scheme are not of any specific type, the priority
values dictate the specific operation; however, they are always binary. To decode, a tree is
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traversed until a fully terminated subtree is reached. The priority values of the two terminal
nodes (at this point they must be convex polygons) are rounded to the nearest integer and
compared, and the polygon with the higher priority value is overlayed on top of the lower
polygon. If the two priority values are equal, then a union operation is performed and the
material values of the node on the left of the tree are used. The priority values of the resulting
polygons are preserved for future operations.

Figure 3 illustrates the decoding process. Figure 3a shows each point list plotted in the plane
with their convex hulls as the dashed lines. The points in each list are represented as symbols
corresponding to the terminal nodes in figure 3b. Figure 3b shows the tree structure defining the
priority combinations. In this example, material values are represented with shading. Figure 3c
shows the result of the leftmost subtree. In this case, the priority values are equal when rounded,
so the result is the union of the two convex polygons. Finally, figure 3d shows the overlap of the
rightmost terminal node and the result of the previous step. The final result is an example of an
inhomogeneous structure, which cannot be encoded using only Boolean operations. Now that the
encoding/decoding scheme is defined, a set of genetic operators can be defined to guide a
population of such tree chromosomes to a solution.

3.2 Genetic Operators

Central to any flavor of genetic algorithm or genetic programming method, the genetic operators,
selection, crossover, and mutation can be adapted to the specific encoding/decoding scheme. As
selection does not involve chromosome structure directly, standard techniques are used (16).
Crossover involves hybridizing two encoded chromosomes by swapping subtrees and point lists
(6) and is discussed in detail in subsection 3.2.1. Mutation, presented in subsection 3.2.2,
increases genetic diversity and several different types are implemented. Many have been
discussed in references 6–8, though some have been altered here.
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Figure 3. Example of the decoding process: (a) Point lists with their convex
hulls, (b) tree defining priority combinations, (c) first subtree decoded,
and (d) final result .
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3.2.1 Crossover

Crossover is the hybridization of two parent chromosomes resulting in two children, which, at
times, contain good traits from each parent. Typically, crossover involves splicing parts of each
chromosome between parents, and possibly hybridizing some nodes. For genetic programming,
subtrees are exchanged and the root nodes of those subtrees may be hybridized in some way.
Crossover for genetic programming can be implemented in a straightforward way; however, “tree
bloat”—the exponential growth of chromosomes—can be a major cause of population stagnation
(17). A solution to tree bloat is to design a crossover scheme that has less variation than the
standard implementation. In other words, the children should resemble their parents closely. In
reference 8, this was accomplished two ways. First, a geometric (phenotypic) similarity-based
crossover probability was used, and also only terminal nodes were used in crossover. Here, the
first method is retained, while the second is abandoned. Only involving terminal nodes in
crossover will certainly eliminate tree bloat via crossover, though it may be too restrictive for
more complicated topologies. Instead, the population is initialized only with single-node trees
(i.e., a single convex polygon), and mutation is primarily responsible for altering the tree
structure.

Selecting a chromosome for crossover now involves two steps. First, for a given chromosome, a
potential set of mates is chosen at random. The number of potential mates is set at

Nm = ⌈Np/20⌉ , (18)

where Np is the population size. For each potential mate, a set of random subtrees are chosen
and compared. The number of subtrees to compare for crossover is an input parameter Nca,
typically set to 10. (Of course, in some cases there may be fewer than Nca unique combinations
of subtrees, so only the smaller of Nca and the total unique combinations are compared.)
Regardless, each chosen subtree is decoded and the resulting geometries are compared for
similarity using

po =

(
2ai

a1 + a2

)s

, (19)

where a1 and a2 are the areas of the decoded subtrees, ai is the area of their intersection, and s is
some given biasing exponent, typically chosen as 2.5. The subtree combination with the highest
po is saved and used as the similarity for that pair of mates. Once the similarity of all mates is
computed, a crossover mate is chosen using roulette wheel selection (16), and a final crossover
probability is computed

pm = pcpo, (20)
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where pc is a given crossover probability, typically between 0.9 and 1. Finally, a weighted coin is
flipped with probability pm, and if successful, the subtree pairs chosen previously are used for
crossover. If two terminal nodes are chosen, their point lists are hybridized.

In addition to tree bloat, the point lists in each terminal node are not subject to a maximum size,
so they can also grow exponentially. To prevent this, point lists are hybridized using two-point
linear crossover, and the number of points to swap—while still random—is kept constant between
each point list. Swapping an equal number of points between two point lists ensures that neither
point list changes size during crossover. Also, the points located at each crossover site are
hybridized by taking a random, weighted sum of the components of each point, as is standard in
many real-coded genetic algorithm implementations. Priority values are hybridized in the same
way, and currently, material values are not changed as the materials are chosen from a database.

3.2.2 Mutation

The main purpose of mutation is to insert new genetic information into a population at random,
hopefully reducing the chance of premature convergence. Given the complexity of the
chromosome used here and its geometric meaning, there are many different types of mutations
possible. These have been discussed extensively in references 6–8, so only new mutations are
covered here. One major difference in general is that, wherever possible, Gaussian random
variables are now used as perturbations rather than uniform random variables in some specified
range.

The first new mutation is a point addition mutation, though rather than randomly adding a point
anywhere in the valid region, the point is added along a line segment of the convex hull. Given
two points, a point can be generated lying at a random point between them

p∗ = th1 + (1− t)h2, 0 ≤ t ≤ 1, (21)

where t is a uniform random variable and h1 and h1 are neighboring points on a convex hull.
Adding p∗ to the point list will not affect the decoded shape, but it may be useful in future
generations. In a similar vein, the point addition mutation has been altered and no longer simply
adds a random point. Point addition proceeds by duplicating a randomly chosen point and
translating it by a small amount. Previously, it was observed that the point addition mutation was
destructive, especially in problems with a large region size. Duplicating and translating an
existing point is less severe.

Terminal node splitting, an important mutation operation, alters the topology of the tree and
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geometry. Previously, terminal nodes were split in half (6) and at the center (8). In this
implementation, a third possible split is used, which simply separates the terminal node’s point
list into two new terminal nodes. The split site is chosen at random, and the priority and material
values of the original terminal node are preserved. This operation can be useful for generating
new geometries, as the previous were designed to generate an identical geometry when decoded.

Finally, priority values and material values can be mutated. Priority values are mutated by adding
a Gaussian random variable with a variance of 2 and a zero mean. The decoded chromosome
may not change with a change in priority (depending on the priority values of the other nodes) so
this can be used with a high rate. Materials are mutated simply by randomly choosing a new
material from the database.

In its entirety, the genetic programming method presented here is similar to references 6–8, but
with a few important changes. These changes lead to a more efficient and effective method as is
demonstrated in section 4.

4. Results

The following are a few examples of the method described previously using different materials.
The following examples were run on a parallel computing system, each using 20, four-core
computers giving a total of 80 nodes. Input parameters for each example are given in table 1.

4.1 Example 1

In the first example, two different materials were available to the algorithm: epoxy and lead, with
material properties taken from reference 2 and epoxy fixed as the matrix. A square unit cell was
used, with side lengths of 1 m. The best result found, shown in figure 4 with light gray indicating
epoxy and dark gray indicating lead, has a relative bandgap size of 0.68 and required 260
generations. Figure 5 gives the band diagram for this example, and the center frequency of the
bandgap is about 850 Hz.
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Table 1. Genetic programming input
parameters.

Parameter Value

Population

Size 300

Tournament Size 4

Crossover Rate 85%

Elitism on

Mutation

Delete nodes 0.5%

Delete one point 2%

Add duplicate point 0.5%

Split hull segment 0.5%

Geometry transform 1%

Priority 1%

Material 1%

Prune 5%

Hull 1%

Point translation 1%

Split in half 1%

Split a hole 1%

Split list 1%

Combine 6%
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Figure 4. Results of example 1; light gray indicates epoxy and dark gray indicates
lead.
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Figure 5. Band diagram for example 1.
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4.2 Example 2

Next, a third material was added, silicone rubber, again with material properties taken from
reference 2; however, the algorithm was allowed to choose the background material. These
materials were chosen in reference 2 to construct a low frequency, local resonance based bandgap,
with a design of a silicone rubber-coated lead sphere embedded in an epoxy matrix laid out in a
cubic arrangement. Again, a square unit cell was used with side lengths of 1 m. A bandgap size
of 1.56 was achieved after 565 generations. The best result found is shown in figure 6. In
contrast to the design in reference 2, the genetic programming-generated design does not coat the
entire mass of lead in silicone rubber, though it still shares common features such as an epoxy
background with lead embedded in silicone rubber. The band diagram for this design is shown in
figure 7, which shows the center frequency of the band is around 550 Hz.
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Figure 6. Results of example 2; light gray indicates epoxy, dark gray indicates
lead, and black represents silicone rubber.
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Figure 7. Band diagram for example 2.
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5. Conclusions

A genetic programming method was applied to design the inclusion of phononic bandgap
materials to maximize the bandgap size. The geometry was encoded using a tree structure that
combines convex polygons using a priority-based overlapping scheme. The algorithm could
choose from a database of materials for both the inclusion and the matrix. Results were given for
three materials: lead, silicone rubber, and epoxy. One example restricted the method to use only
lead and epoxy with epoxy fixed as the matrix material. In another example, all three materials
were allowed with no fixed matrix. Bandgaps were achieved for each material system.

In the future, the method could be extended to a multi-objective problem, where bandgap size
could be simultaneously optimized with another goal such as center frequency or inclusion size.
Additional materials could be used for specific applications.
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B SCHUSTER

RDRL WMM
J BEATTY
R DOWDING

RDRL WMM A
M MAHER
J TZENG
E WETZEL

RDRL WMM B
T BOGETTI
B CHEESEMAN
C FOUNTZOULAS
G GAZONAS
D HOPKINS
P MOY
B POWERS
C RANDOW
T SANO
M VANLANDINGHAM
R WILDMAN
C F YEN

RDRL WMM C
J LA SCALA

RDRL WMM D
E CHIN
K CHO

RDRL WMM E
J ADAMS
M COLE
T JESSEN
J LASALVIA
P PATEL
J SANDS

RDRL WMM F
L KECSKES
H MAUPIN

RDRL WML G
J ANDZELM
A RAWLETT

RDRL WMP
P BAKER
S SCHOENFELD

RDRL WMP B
R BECKER
S BILYK
D CASEM
J CLAYTON
M GREENFIELD

C HOPPEL
R KRAFT
B LEAVY
M RAFTENBERG
S SATAPATHY
M SCHEIDLER
T WEERASOORIYA

RDRL WMP C
T BJERKE
S SEGLETES

RDRL WMP D
R DONEY
D KLEPONIS
J RUNYEON
B SCOTT
H MEYER

RDRL WMP E
M BURKINS
B LOVE

RDRL WMP F
M CHOWDHURY
A FRYDMAN
N GNIAZDOWSKI
R GUPTA

RDRL WMP G
N ELDREDGE
D KOOKER
S KUKUCK
G R PEHRSON
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